Co-option of a photoperiodic growth-phase transition system during land plant evolution.

نویسندگان

  • Akane Kubota
  • Shogo Kita
  • Kimitsune Ishizaki
  • Ryuichi Nishihama
  • Katsuyuki T Yamato
  • Takayuki Kohchi
چکیده

Photoperiodic control of the phase transition from vegetative to reproductive growth is critical for land plants. The GIGANTEA (GI) and FLAVIN-BINDING KELCH REPEAT F-BOX1 (FKF1) protein complex controls this process in angiosperms. However, little is known about how plants evolved this regulatory system. Here, we report that orthologues of GI and FKF1 are present in a basal plant, the liverwort Marchantia polymorpha, and describe the molecular interaction between their products. Knockout of either the GI or FKF1 orthologue completely abolishes the long-day-dependent growth-phase transition in M. polymorpha. Overexpression of either gene promotes growth-phase transition, even under short-day conditions. Introduction of the GI orthologue partially rescues the late-flowering phenotype of the Arabidopsis thaliana gi mutant. Our findings suggest that plants had already acquired the GI-FKF1 system to regulate growth-phase transition when they colonized land, and that this system was co-opted from gametophyte to sporophyte generation during evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chlamydomonas CONSTANS and the Evolution of Plant Photoperiodic Signaling

BACKGROUND The circadian clock controls several important processes in plant development, including the phase transition from vegetative growth to flowering. In Arabidopsis thaliana, the circadian-regulated gene CONSTANS (CO) plays a central role in the photoperiodic control of the floral transition, one of the most conserved flowering responses among distantly related plants. CO is a member of...

متن کامل

WAP1, a wheat APETALA1 homolog, plays a central role in the phase transition from vegetative to reproductive growth.

Heading time in bread wheat (Triticum aestivum L.) is determined by three characters: vernalization requirement, photoperiodic sensitivity and narrow-sense earliness, which are involved in the phase transition from vegetative to reproductive growth. We identified and characterized the APETALA1 (AP1)-like MADS box gene in wheat (WAP1) as an activator of phase transition. Its expression starts ju...

متن کامل

An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling.

The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger...

متن کامل

A Tree Ortholog of APETALA1 Mediates Photoperiodic Control of Seasonal Growth

BACKGROUND Photoperiodic control of development plays a key role in adaptation of plants to seasonal changes. A signaling module consisting of CONSTANS (CO) and FLOWERING LOCUS T (FT) mediates in photoperiodic control of a variety of developmental transitions (e.g., flowering, tuberization, and seasonal growth cessation in trees). How this conserved CO/FT module can mediate in the photoperiodic...

متن کامل

Genetic Regulation of the 2D to 3D Growth Transition in the Moss Physcomitrella patens

One of the most important events in the history of life on earth was the colonization of land by plants; this transition coincided with and was most likely enabled by the evolution of 3-dimensional (3D) growth. Today, the diverse morphologies exhibited across the terrestrial biosphere arise from the differential regulation of 3D growth processes during development. In many plants, 3D growth is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014